Unified Communication X (UCX)
Pavel Shamis / Pasha
ARM Research
SC’18
UCF Consortium

- **Mission:**
 - Collaboration between industry, laboratories, and academia to create production grade communication frameworks and open standards for data centric and high-performance applications

- **Projects**
 - UCX – Unified Communication X
 - Open RDMA

- **Board members**
 - **Jeff Kuehn**, UCF Chairman (Los Alamos National Laboratory)
 - **Gilad Shainer**, UCF President (Mellanox Technologies)
 - **Pavel Shamis**, UCF treasurer (ARM)
 - **Brad Benton**, Board Member (AMD)
 - **Duncan Poole**, Board Member (Nvidia)
 - **Pavan Balaji**, Board Member (Argonne National Laboratory)
 - **Sameh Sharkawi**, Board Member (IBM)
 - **Dhabaleswar K. (DK) Panda**, Board Member (Ohio State University)
 - **Steve Poole**, Board Member (Open Source Software Solutions)
A new project based on concept and ideas from multiple generation of HPC networks stack

- Performance
- Scalability
- Efficiency
- Portability

UCX - History

Decades of community and industry experience in development of HPC network software

UCX

- Modular Architecture
- Network Layers
- Open MPI
- PAMI
- MXM
- APIs, context, thread safety, etc.
- APIs, Low-level optimizations
- APIs, software infrastructure optimizations

© 2018 UCF Consortium
UCX Framework Mission

- Collaboration between industry, laboratories, government (DoD, DoE), and academia
- Create open-source production grade communication framework for HPC applications
- Enable the highest performance through co-design of software-hardware interfaces

API
Exposes broad semantics that target data centric and HPC programming models and applications

Performance oriented
Optimization for low-software overheads in communication path allows near native-level performance

Production quality
Developed, maintained, tested, and used by industry and researcher community

Community driven
Collaboration between industry, laboratories, and academia

Research
The framework concepts and ideas are driven by research in academia, laboratories, and industry

Cross platform
Support for Infiniband, Cray, various shared memory (x86-64, Power, ARMv8), GPUs

Co-design of Exascale Network APIs
UCX Framework

- UCX is a framework for network APIs and stacks

- UCX aims to unify the different network APIs, protocols and implementations into a single framework that is portable, efficient and functional

- UCX doesn’t focus on supporting a single programming model, instead it provides APIs and protocols that can be used to tailor the functionalities of a particular programming model efficiently

- When different programming paradigms and applications use UCX to implement their functionality, it increases their portability. As just implementing a small set of UCX APIs on top of a new hardware ensures that these applications can run seamlessly without having to implement it themselves
- **UCX framework** is composed of three main components.
- **UCP** layer is the protocol layer and supports all the functionalities exposed by the high-level APIs, meaning it emulates the features that are not implemented in the underlying hardware.
- **UCT** layer is the transport layer that aims to provide a very efficient and low-overhead access to the hardware resources.
- **UCS** is a service layer that provides common data structures, memory management tools and other utilities.
UCX High-level Overview

Applications

- **UCX**
 - **UC-T (Hardware Transports) - Low Level API**
 - Transport for InfiniBand VERBs driver
 - RC, UD, XRC, DCT
 - Transport for Gemini/Aries drivers
 - GNI
 - Transport for intra-node host memory communication
 - SYSV, POSIX, KNEM, CMA, XPMEM
 - Transport for Accelerator Memory communication
 - GPU
 - **UC-P (Protocols) - High Level API**
 - Message Passing API Domain: tag matching, rendezvous
 - PGAS API Domain: RMAs, Atomics
 - Task Based API Domain: Active Messages
 - I/O API Domain: Stream

UC-S (Services)

- Common utilities
- Memory Management
- Utilities
- Data structures

Hardware

- OFA Verbs Driver
- Cray Driver
- OS Kernel
- Cuda

UCX is a high-level communication framework that includes both protocols and transports. It supports various applications such as MPICH, Open-MPI, etc., OpenSHMEM, UPC, CAF, X10, Chapel, etc., Parsec, OCR, Legions, etc., and Burst buffer, ADIOS, etc. The diagram illustrates the high-level overview of UCX, emphasizing its role in providing a unified communication framework for diverse applications and hardware.
UCX Releases in 2018

v1.3.1 - https://github.com/openucx/ucx/releases/tag/v1.3.1
- Multi-rail support for eager and rendezvous protocols
- Added stream-based communication API
- Added support for GPU platforms: Nvidia CUDA and AMD ROCM software stacks
- Added API for Client-Server based connection establishment
- Added support for TCP transport (Send/Receive semantics)
- Support for InfiniBand hardware tag-matching for DC and accelerated transports
- Added support for tag-matching communications with CUDA buffers
- Initial support for Java bindings
- Progress engine optimizations
- Improved scalability of software tag-matching by using a hash table
- Added transparent huge-pages allocator
- Added non-blocking flush and disconnect semantics
- Added registration cache for KNEM
- Support fixed-address memory allocation via ucp_mem_map()
- Added ucp_tag_send_nbr() API to avoid send request allocation
- Support global addressing in all IB transports
- Add support for external epoll fd and edge-triggered events
- Added ucp_rkey_ptr() to obtain pointer for shared memory region
UCX Releases in 2018 - continued

- **V1.4.0** - https://github.com/openucx/ucx/releases/tag/v1.4.0
 - Support for installation with latest **AMD ROCm**
 - Support for latest **RDMA-CORE**
 - Support for **NVIDIA CUDA IPC** for intra-node GPU
 - Support for **NVIDIA CUDA** memory allocation cache for mem-type detection
 - Support for latest **Mellanox devices (200Gb/s)**
 - Support for **NVIDIA GPU managed memory**
 - Support for **bitwise** (OpenSHMEM v1.4) atomics operations

X86, Power8/9, arm

State-of-the-art support for GP-GPU

InfiniBand, RoCEv1/v2, Gemini/Aries, Shared Memory, TCP/Ethernet (Beta)
UCX Releases in 2018 - continued

- V1.5.0 – End of November: ADD branch here
 - New *emulation* mode enabling comprehensive UCX functionality (Atomic, Put, Get, etc) over TCP and legacy interconnects that don't implement full RDMA semantics.
 - New *non-blocking API* for all one-sided operations.
 - New *client/server connection establishment* API
 - New advanced *statistic* capabilities (tag matching queues)
UCX Roadmap

- **v1.6 – Q1 2018**
 - Bugfixes and optimizations
 - IWARP
 - Active Message API

- **v2.0 – Q3-Q4 2019**
 - Updated API – not backward compatible with 1.x
 - Cleanup (remove deprecated APIs)
 - UCP request object redesign – improves future backward compatibility
 - Binary distribution will provide v1.x version of the library (in addition for 2.x) for backward compatibility
 - All codes should work as it is
Integrations

- Open MPI and OSHMEM
 - UCX replaces OpenIB BTL as default transport for InfiniBand and RoCE
 - New UCX BTL (by LANL)

- MPICH MPI
 - CH4 UCX

- OSSS SHMEM by StonyBrook and LANL

- Open SHMEM-X by ORNL

- Parsec (UTK)

- Intel Libfabrics/OFI
 - Powered by UCX!

- 3rd party commercial projects
We Love Testing

Over 100,000 tests per commit

220,000 CPU hours per release
Performance – MPI Latency and Bandwidth

OSU_Latency (UCX)

OSU_Bandwidth (UCX)
Performance - Fluent

Ansys Fluent (oil_rig_7m)

Solver Rating

Number of Nodes

OpenMPI Intel MPI Platform MPI HPC-X

4 8 16 32
Cavium Thunder X2 SINGLE core InfiniBand Bandwidth

Higher is better
Cavium Thunder X2 MPI Ping-Pong Latency with InfiniBand

Lower is better
Cavium Thunder X2 MPI Message Rate with InfiniBand (28 cores)

MPI Message Rate

Message Size

Message Per Second

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152

Millions

Higher is better

© 2018 UCF Consortium
- Open MPI + UCX full scale!
UCX over ROCm: Intra-node support

- Zero-copy based design
 - uct_rocm_cma_ep_put_zcopy
 - uct_rocm_cma_ep_get_zcopy

- Zero-copy based implementation
 - Similar to the CMA UCT code in UCX
 - ROCm provides similar functions to the original CMA for GPU memories
 - hsaKmtProcessVMWrite
 - hsaKmtProcessVMRead

- IPC for intra-node communication
 - Working on providing ROCm-IPC support in UCX

- Test-bed:
 - AMD FIJI GPUs, Intel CPU, Mellanox Connect-IB
 - OMB latency benchmark

- ROCM-CMA provides efficient support for large messages
 - 1.9 us for 4 Bytes transfer for intra-node D-D
 - 43 us for 512KBytes transfer for intra-node
UCX Support in CH4

- UCX Netmod Development
 - MPICH Team
 - Tommy Janjusic (Mellanox)
- MPICH 3.3rc1 just released
 - Includes an embedded UCX 1.4.0
- Native path
 - pt2pt (with pack/unpack callbacks for non-contig buffers)
 - contiguous put/get rma for win_create/win_allocate windows
- Non-native path is CH4 active messages (hdr + data)
 - Layered over UCX tagged API
- Not yet supported
 - MPI dynamic processes

OSU Latency: 0.99us
OSU BW: 12064.12 MB/s
Argonne JLSE Gomez Cluster
- Intel Haswell-EX E7-8867v3 @ 2.5 GHz
- Connect-X 4 EDR
- HPC-X 2.2.0, OFED 4.4-2.0.7
Verbs-level Performance: Message Rate

ConnectX-5 EDR (100 Gbps), Intel Broadwell E5-2680 @ 2.4 GHz
MOFED 4.2-1, RHEL-7 3.10.0-693.17.1.el7.x86_64
Unified Communication - X Framework

WEB:
www.openucx.org
https://github.com/openucx/ucx

Mailing List:
https://elist.ornl.gov/mailman/listinfo/ucx-group
ucx-group@elist.ornl.gov
Thank You

The UCF Consortium is a collaboration between industry, laboratories, and academia to create production grade communication frameworks and open standards for data centric and high-performance applications.